Assessing Aircraft Icing Environments

FAA In-flight Icing/Ground De-icing International Conference

Stewart G. Cober¹, George A. Isaac¹,

Alexei V. Korolev² and J. Walter Strapp¹

- 1. Cloud Physics Research Division
 - 2. SkyTech Research Inc.

Aim

To provide guidance on how to interpret some instruments that, for research and certification purposes, may be used for characterizing icing environments.

Outline

- Background
- Hot Wire LWC Measurements
- Rosemount Icing Detector Measurements
- FSSP Droplet Measurements
- 2D Hydrometeor Measurements
- Identification of Cloud Phase
- Conclusions

Field Projects Used For This Analysis

- CFDE I
- CFDE III
- FIRE.ACE
- AIRS
- Total

- 27 Feb 1995 24 Mar 1995 48 Hours
- 10 Dec 1997 18 Feb 1998 106 Hours
- 01 Apr 1998 29 Apr 1998 74 Hours
- 02 Dec 1999 -19 Feb 2000 95 Hours
- 81 Flights

323 Hours

NRC Convair-580

Instrument

- Rosemount temperature sensor (x2)
- Reverse flow temperature sensor
- Cambridge dew point hygrometer
- Pitot tube (x3)
- Rosemount-858 probe
- PMS King LWC probe (x2)
- Nevzorov LWC probe
- Nevzorov TWC probe
- PMS FSSP 100 3-45 microns
- PMS FSSP 100 5-95 microns
- PMS 2D-C Mono 25-800 microns
- PMS 2D-C Grey 25-1600 microns
- PMS 2D-P Mono 200-6400 microns
- Rosemount Icing Detector

Variable

Temperature

Temperature

Dew Point

Air speed, pressure

Air speed, pressure

Liquid water content

Liquid water content

Total water content

Droplet concentration/size

Droplet concentration/size

Hydrometeor conc./size

Hydrometeor conc./size

Hydrometeor conc./size

Icing accumulation rate

Hot Wire LWC Measurements

Convair-580 LWC Boom

Time History of LWC

Hot Wire LWC Comparison

LWC Probe Response to Ice

LWC Probe Fractional Response to Ice

Rosemount Icing Detector Measurements

Example of a RID Cycle

Time History of RID Signal

$$\frac{dV}{dt} = k E A V_e LWC = k \underline{dM}$$

- dV/dt is the rate of change of voltage (mV s⁻¹)
- k is the slope
- E is the drop collision-collection efficiency
- A is the area of sweep out for the RID (m²)
- V_e is the aircraft/RID velocity (m s⁻¹)
- LWC is the cloud liquid water content (g m⁻³)
- dM/dt is the mass sweep out with time (g s⁻¹)

Correlation with LWC

Determination of Non-Linear Response

Ludlam Limit Estimation

FSSP Droplet Measurements

FSSP Concentration Comparison

FSSP 5-95 µm Response to Ice

FSSP 3-45 µm Response to Ice

2D Hydrometeor Measurements

Example of 2D-C Images

Example of 2D-G Images

Geometric Ratios for Circles

2D-C Circular Identification Error

Identification of Cloud Phase

Summary of observed instrument responses for each cloud phase

Parameter	L	G	M	Notes
Nevzorov LWC/TWC	> 0.85	< 0.25	0.2-1.0	
King LWC/TWC	> 0.85	< 0.25	0.2-1.0	
2DC Circle Fraction	> 0.85	< 0.35		≥ 5 pixels
2DG Circle Fraction	> 0.85	< 0.40		≥ 5 pixels
FSSP 5-95 50% VD		> 30 μm		99.9% G, 4% L
FSSP 5-95 80% VD		> 40 μm		100% G, 2% L
FSSP Conc		< 15 cm ⁻³		100% G, 8% L
RID Voltage	$> 2 \text{ mV s}^{-1}$	$< 2 \text{ mV s}^{-1}$	$> 2 \text{ mV s}^{-1}$	T < -4°C

Phase Versus Temperature

Conclusions

At approximately 100 m s⁻¹, the following instrument responses need to be considered when characterizing icing conditions:

- Hot wire probes respond to ice crystals (10-20 %)
- FSSP probes are dominated by ice crystals $> 35 \mu m$
- 2D probes see drops as non-circles (5-15%)
- 2D probes see crystals as circles (5-40%)
- RID response to icing is non-linear close to 0°C
- The MSC FSSP and 2D instruments cannot be used to assess drop/SLD sizes from 35 to 250 microns when the ice crystal concentration exceeds 1 L⁻¹.

References

Cober, S.G., G.A. Isaac, A.V. Korolev, and J.W. Strapp, 2001: Assessing cloud-phase conditions. *J. Appl. Meteor.*, **40**, 1967-1983.

Korolev, A.V., G.A. Isaac, S.G. Cober, J.W. Strapp, and J. Hallett, 2003: Observations of the microstructure of mixed phase clouds. *Quart. J. Roy. Meteorol. Soc.*, **129**, 39-65.

Cober, S.G., and G.A. Isaac, 2002: Aircraft environments observed in mixed-phase clouds. *AIAA 40th Aerospace Sci. Meeting and Exhibit*, Reno Nevada, 14-17 January 2002, AIAA 2002-0675.

Cober, S.G., G.A. Isaac, and A.V. Korolev, 2001: Assessing the Rosemount icing detector with in-situ measurements. *J. Atmos. Oceanic Technol.*, **18**, 515-528.

Mazin, I.P., Korolev, A.V., A. Heymsfield, G.A. Isaac, and S.G. Cober, 2001: Thermodynamics of icing cylinder for measurements of liquid water content in supercooled clouds. *J. Atmos. Oceanic Technol.*, **18**, 543-558.